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case of a wedge-shaped crystal the new correction is 
very small [up to 12% for the function ~0(a)] and is 
zero for the plane parallel plate. For spherical crystals 
the influence of the primary beam is more serious. If 
o'r0 becomes large compared to 1 the deviation from a 
crystal bathed in a constant beam increases. This case 
becomes important for small scattering angles and 
large crystals, i.e. when extinction effects become 
large. Under these circumstances, corrections for 
primary beam shapes might not be negligible. 

In any case, before applying the uncorrected theory 
it is recommended that each specific experiment should 
be carefully in vestigated in order to establish whether 

a treatment for the primary beam is necessary. With 
the use of high-speed computers this can be done for 
arbitrarily shaped crystals and primary beams by 
using equations (2a-c). 

References 

BECKER, P. J. & COPPENS, P. (1974). Acta Cryst. A30, 129- 
147. 

BECKER, P. J. & COVVENS, P. (1974). Acta Cryst. A30, 148- 
153. 

BECKER, P. J. & COPPENS, P. (1975). Acta Cryst. A31,417- 
425. 

ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564. 

Acta Cryst. (1976). A32, 635 

Extinction in Neutron Diffraction 

BY N. C. POVA 

Institute for Atomic Physics, P.O. Box 5206, Bucharest, Romania 

(Received 26 August 1975; accepted 13 January 1976) 

This article re-analyses the extinction problem in diffraction. It has been proved that Hamilton's 
equations are valid only for mosaic crystals, type I. The solution of these equations has been found for 
any shape of crystal using general initial conditions. 

Introduction 

The extinction problem received considerable attention 
once it was found necessary to make corrections for 
extinction, when determining crystallographic struc- 
tures. Later, the necessity of using monochromatic 
crystals more efficiently led to the same problem. 

For an ideal crystal, the extinction factor is deter- 
mined from the dynamic theory, but in practice its 
formula has been computed only for an infinite, plane 
parallel crystal plate (see Zachariasen, 1945). For a 
real crystal, however, Darwin's equations formulated 
for an infinite plane parallel plate, were generalized by 
Hamilton (1957) for a crystal of arbitrary shape and 
these were solved numerically by him. Werner & Ar- 
rott (1965) arranged Hamilton's equations into an inte- 
gral form and solved them by successive approxima- 
tions. This, in practice, is a tedious method which re- 
quires much calculation. But, as will be indicated 
below, there are regions in the crystal where it is pos- 
sible to obtain a direct solution of Hamilton's equa- 
tions by solving two initial-value problems. It should 
be mentioned that Werner, Arrott, King & Kendrick 
(1966) have proposed another method for solving 
Hamilton's equations for both finite and infinite plane 
parallel crystal plates. This method involves the expan- 
sion of the incident and diffracted intensities, in terms 
of modified Bessel functions. This method is not gen- 
eral because, when another crystal shape is considered, 

another set of functions must be found from which the 
expansion may be performed. 

Zachariasen (1967) has suggested a general extinction 
theory. Several authors have carried out a number of 
experimental tests and no experimental agreement has 
been found for Zachariasen's theory for strong extinc- 
tion. It has been concluded that some approximations 
used by Zachariasen are not valid (see Cooper & 
Rouse, 1970). Werner (1969) also found fault with this 
theory. One criticism is that Hamilton's equations do 
not hold good for a perfect crystal. Zachariasen wrote 
Hamilton's.equations using variables tl and tz to rep- 
resent the depths below the surface measured along the 
two propagation directions. But for these variables the 
form of the equations is not always preserved. A new 
term appears, which contains the derivative of the 
function describing the boundary. This term disappears 
only if the crystal takes the form of a parallelepiped 
whose edges are oriented in the two propagation direc- 
tions. Therefore, Zachariasen's theory is valid in this 
case only. 

Consequently, it is necessary to reconsider the ex- 
tinction problem. §1 of this article is devoted to a 
general discussion of the transport equations for 
Bragg diffraction. It will be demonstrated that the 
Hamilton equations are valid for type I mosaic crystals 
only. In the §2, these equations are solved for a crystal 
of any shape. An application of the formulae derived 
in §2 is given in §3. 
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1. Transport equations for Bragg diffraction 
In a classic diffraction experiment, a slightly divergent, 
energetic narrow beam of neutrons (X-rays) is incident 
on a monocrystal at an angle approximately equal to 
the Bragg angle 0~, such that a single diffracted beam 
is produced. For simplicity, it will be assumed that the 
incident beam is perfectly monochromatic. Passing on 
to the real case is a simple matter. 

The spatial and angular distribution of the scattered 
neutrons needs to be determined. The starting point of 
the analysis is equation (1) from Vineyard's (1954) ar- 
ticle. Let I(")(r, s) be the intensity at point r of neutrons 
reflected n times and propagated along the direction s. 
Let an(s,s') be the cross section per unit volume, des- 
cribing Bragg scattering in direction s' of neutrons 
propagated along direction s. The cross section des- 
cribing Bragg scattering of neutrons propagated in 
direction s, is defined thus: 

a(s)= I ds'aa(s,s') ; (1) 

an corresponds to a sub-macroscopic part of the crystal, 
which is large enough to have a structure, but small 
enough to have only one scattering process. If the total 
absorption coefficient is denoted by/.t, the equation 
governing the scattering is: 

sVsX~"~(r, s) = - [/~ + a(s)]X~"~(r, s)  

+ I  ds'aa(s"s)IC"-l)(r's') " (2) 

For convenience, the coordinate system is taken to 
have x and y axes along the incident and reflected 
direction respectively, thus satisfying the ideal Bragg 
relationship, and the z axis normal to the (x,y) hori- 
zontal plane (Fig. 1). Any direction s in the incident 
and reflected beams will be given by the horizontal and 
vertical divergences y~,~l and 7z, d2 measured relative 
to the x,y axes. It will be assumed that these angles are 
small. When the neutrons are scattered n times it will 
be noticed that, if n is even, propagation is in the in- 
cident beam and, if n is odd, in the reflected beam. 
Therefore, from equation (2): 

- [ ~ + a ( ~ , ~ 6 3 ] ~ r o ( r ~ , ~ 6 3  Ox 

-t- I I aa(~2~z~t~l)I(ry2t~2)d~)2d62, (3a) 

0I(ry2~z) 
dy 

+ I I aa()5~Tz~z)Io(rT~r~Od)hd6~, (3b) 
dd 

where 
c~ 

I0(r~q61) = ~ I(2k)(r,s), (4a) 
k = 0  

oo 

X(rrA2) = ~ xc",+.(r,s'). (4b) 
k = O  

It is now necessary to calculate an, which is defined as 
a differential cross section per unit volume in a kine- 
matic approximation. 

(i) Small perfect crystal 
For a perfect crystal, the range of coherence is ex- 

tended to the whole volume of the crystal. With this in 
mind, Zachariasen (1967) defines an as the ratio of the 
kinematic cross section of the whole crystal to its vol- 
ume. Thus: 

1 da 1 
an(V~6xyz6z) . . . . . .  IF(~)IZl ~ exp (iKI)I z (5) 

u dO u 1 

where K is the momentum transfer, I is the lattice vector 
and u is the volume of the crystal. When using equation 
(5) to determine an it is assumed that its value does not 
depend on r. For the parallelepiped shown in Fig. 1, 
the right-hand side of equation (5) becomes: 

Inc. beam 

where 

= Q~3/sin 20. 
sin 2 zt~),x sin E zcc~,z 
( ~ 1 ) 2  (~r2)2 

sin E [ha(fix + 62)/sin 20] 
x --[~-(d~_ 61)/sin 20] 2 (6) 

Q=23n21FlZ/sin 20; ct= t/2. (7) 

In equation (6), h and v are the factors which ex- 
clusively depend upon the horizontal and vertical di- 
vergences respectively. For any shape of crystal ae 
becomes more complicated. But (6) may be used pro- 
vided that t is replaced by f the mean thickness meas- 
ured normal to the incident direction (Zachariasen, 
1967). By using (6) and (1): 

sin 2 ~(z~) 1 
a(7161)=ah(TL)=Qc~ (rCC%) z . (8) 

y 

Fig. 1. Geometry of incident and diffraction directions. The 
axes x,y are taken along the incident and reflected direc- 
tions satisfying the ideal Bragg relation. 
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(ii) Real  crystals 
It is assumed that a real crystal consists of a large 

number of small, perfect crystals whose misalignment 
obeys the isotropic Gaussian distribution law: 

W(A) = ]/2g exp (-2zrg2A2), (9) 

where A is the angular deviation measured from the 
mean orientation. It will also be assumed that these 
mosaic regions are almost identical and the primary 
extinction is weak. Therefore, for any such region, the 
cross section per unit volume is given by (6), where 
depends on the mean size of that region. Consequently, 
a mean value on may be defined: 

= I aah(?q- A, ) '2-  A) W(A)dA 

x f a,o(~ - A sin 0, fi2- A sin 0) W(A)dA 

(10) 
With the approximation: 

sin 2 rcx/(7~x) 2 ~_ exp ( -  nx 2) (11) 

(10) becomes: 

~,~(~72) = Q ga V ~ + g  2 

x exp -- ~z 2(a2 + g2) [(a2 + 292) 0~2 + 72 ~) _ 2a27~,2] 

(12a) 

o~o(O~Oz) = ~g 
]/gZ sin 2 20+2a2 sin 2 0 

x exp -~Zg 2 sin 2 20+2a 2 sin 2 0 (fix+~2)2 ' 
(12b) 

and therefore, from (1): 

=¢2Q 
V~ +2g 2 

xexp ( - 2 ~  0~2g2 }'12) . (13) 
a2 + 2g 2 

NOW, using the theorem of the mean for the integrals 
over fi2 and fix respectively in the right hand side of (3a) 
and (3b) and integrating the resulting equations from 
~ and ~2, then: 

OPo(rTx) 
c~x 

= - [ / t  + ~(7~)]Po(r)'1) + I 6an(7172)P(r72)dT2 (14a) 

0y 

= + I e h(Tz73Po(r73dT , (14b) ,J 

where: 

Po(r?h) = I I°(rTxfil)d6~ ' (1 5a) 

P(r)'2) = I I(r72fi2)dfi2 • (1 5b) 

Clearly, for a perfect crystal the values 6dh and 6h are 
replaced in (14a) and (14b) with aah and ah respectively. 

Zachariasen (1967) investigated two limiting cases 
for a real crystal. 

(a) Ife>>g the crystal is of type I, and (12a) and (13) 
then become: 

~dh(~a~2) : Q W(Tx)8(),2 - )q) , (16) 

6h(7~)=QW(7~) , (17) 

and (14a) and (14b) become: 

OPo(rT) 
- [lu+QW(~,)]Po(r,~,)+QW(~,)P(r,7), (18a) 

3x 

0P(r,7) 
- [#+QW(7)]P(r,7)+QW(7)P0(r,7). (18b) 3x 

These are the transport equations in the form given by 
Hamilton. 

(b) If a ~ g  the crystal is type II, and (12a) and (13) 
are written: 

6"dh(Yly2) = Qt~ 2 exp [ -  ~zct2(7~ + 72)], (19) 
~h(71) = Q~ exp ( -  rc~2~,~), (20) 

and (14a) and (14b) are unaltered. 
Thus, the transport equations for Bragg diffraction 

have the form given by Hamilton only for type I 
mosaic crystals. 

2. The solution of the Hamilton equations 

Equations (18) will be solved for any shape of crystal 
with any initial conditions. This means that the crystal 
may be totally or partially immersed in the incident 
beam, which may have a spatial variation at the 
boundary. 

So, let us denote the quantity Q w(y) from equations 
(18) by a and by using the function transformation: 

Po=~ ' exp [ - (¢ t+a )  (x+y)] ,  (23a) 
P =  ~o exp [ -  (~ + a) (x +y)] ,  (23b) 

equations (18) become: 

3x =a~o; ~ - = a ~ .  (24a, b) 

The boundary conditions for the functions ~, and ~0 
will be obtained from the boundary conditions for Po 
and P using (23). By differentiating (24): 

c32~ ~2(p (25a, b) 
~xOy - a2gt ; ~x3y - a2~° " 

Equations (25) are partial differential second-order 
equations of hyperbolic type for which the correspond- 
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ing Riemann function is: 

w(x,y,~,r/)=jo[2a~(~-x) ( y -  r/)] (26) 

where j0 is the Bessel function of zero order. The char- 
acteristic curves are the straight lines x = c~ and y = oz. 

There are three kinds of initial-value problems for 
this type of equations: Cauchy, characteristic initial 
value, and mixed. Depending upon the region within 
the crystal, one of these will be applicable. 

As far as the first two are concerned, there are some 
general formulae from which the function V (or ~0) may 
be deduced (see Morse & Feshbach, 1953). For the 
mixed problem, however, only the successive approx- 
imation method has up to now been available. Below, 
another method for solving the mixed problem is sug- 
gested. This, although it requires less computation than 
the successive approximation method, is not a general 
method, but it holds for the case of multiple Bragg 
diffraction. 

O) Cauchy problem 
The function and one of its derivatives are given on 

a monotonic curve /-'. The solution at a given point 
R(~,r/) (Fig. 2) is: 

l 8~, 8w 
Vg = Va + A8 W ~ dx+  V ~ -  dy (27a) 

when V and 8V/Ox are on the curve f', or: 

I V R = ~ " -  ~-8-x dx+w dy (27b} 
AB 

when q/and 8~/Oy are on the curve F. Here IAB... is a 
curvilinear integral on F, between the points A and B 
and in the sense from A to B. w is the Riemann function 
given by (26). 

(ii) Characteristic initial-value problem 
Here the function is given on the characteristics 

X=Xo y=y¢ (Fig. 3), or equally the function is given 
on one characteristic and the derivative (of the func- 
tion) on the other. The solution at any point R(~, ~) is: 

I B 8V i A 8w Vg = Va + w ~ d x -  V -By dy 
c c 

= V s -  c V-~xdX+ c W~y-dy. (28a, b) 

The function ~,, given by the formulae (27) and (28), 
may be expanded in a power series of a because along 
the boundary this function and its derivatives, as well 
as w and its derivatives, may be expanded in such a 
series. Clearly, these formulae are also valid for the 
function ~0. 

(iii) Mixed problem 
Generally, for this problem the function is defined 

on a monotonic curve F and on a characteristic 

(Fig. 2). For the case under consideration the problem 
may be formulated using otfier similar methods be- 
cause the functions ~0 and ~t are correlated by (24). The 
problems for two practical cases are presented. Let the 
curve F be described by equations y = c~(x) or x =fl(y). 

(iiia) In the mixed problem for ~g it is known that ~, 
is given on the curve F and ~0 on the characteristic 
Y=Y0, namely 

g(Y) = V[fl(Y), Y] , (29a) 

f (x) = q~(x, yo) . (29/)) 

We use q) to denote function ~0 on the curve F (which 
is the boundary of the crystal): 

• (x)=~[x,~(x)]. (30) 

For Bragg diffraction, functions ~' and ~p may be ex- 
panded thus: 

N(x,y, cr) = ~ V,,(x,y)a", (31a) 
n = 0  

c o  

~o(x,y,a)=a ~ ~o,,(x,y)a". (31b) 
n = 0  

This is a general expansion but for a particular case 
the coefficients V, and ~0, may be zero, starting with a 
given value of n. Allowing for this, a recurrence for- 
mula is given in Appendix I, from which the coefficients 
• , may be calculated. Hence, by solving the mixed 
problem for ~,, the function ~0 on the boundary may 
be derived. 

/ / "  x[~(,!),,11 t 
/ t . . . .  - / R ( ~ , , I )  

Fig. 2. Diagram for the Cauchy problem and the mixed pro- 
blem. The curve F is a part of crystal boundary. 

Y•AI//_.II R( ~, 1'1) 

A . . . .  II11 

}_ ;c  , 
yc B 

Xc X 

Fig. 3. Diagram for characteristic initial-value problem. 
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(iiib) In the mixed problem for 9 the function 9 is 
given on the curve F, and g/ on the characteristic 
X~Xo: 

g(x) = 9[x, o~(x)] (32a) 

f(y)=~(Xo,y) . (32b) 

We use 7 t to denote the function ~u on the curve F: 

~0 ' )  = q/[fl0'),Y] • (33) 

~,  is obtained in an analogous manner to the above. 
One's attention should be drawn to the fact that the 

functions ~ and cp may be derived, if required, for any 
point in the region for which these mixed problems are 
solved (see Appendix I). 

As has been mentioned previously, all three prob- 
lems may occur in a real case. The solution of a prob- 
lem on a certain straight line in the crystal represents 
an initial condition for another problem. For the ex- 
ample in Fig. 4, it is seen that the crystal is totally im- 
mersed in the incident beam. The crystal is divided into 
regions in accordance with the conditions required by 
the problems presented above. ~ is given on the arc 
ABC and 9 on the arc DAB. Using (24), ~/c3x and 
~9/3y can be calculated on the arc CAB. Therefore, in 
the region AMPQNB a Cauchy problem exists for both 

A B 

x 

Fig. 4. Diagram of a subdivided, convex crystal totally im- 
mersed in incident beam, at a particular Bragg angle. 

Nk, ~ Y /  Diff. beam 

I P X\\ I / / / / x \ \ \ \  III / / / /  

' ,  ; /  II ,, /I IV 

' ' \ \ a  ax 
x 

Fig. 5. Reflexion of a ~-beam on a plane parallel plate. 

functions ~t and 9.. ~0 is calculated on the arc PQ and 
the segment BQ and ~u is calculated on the segment 
AP. In the region BNC a mixed problem exists for ~u 
from which is derived 9 on the arc BC and ~ on the 
segment NC. A characteristic initial-value problem 
exists in the region NCQ. When this is solved 9 is ob- 
tained on the arc CQ. In the region AMD, the function 
cp on the segment MD is deduced by solving a mixed 
problem for 9. in the region DMP, the solution to a 
characteristic initial-value problem gives ~0 on the arc 
DM. Therefore, the function 9 is derived over the 
whole arc BCD. The function P is now deduced from 
(23b). For practical purposes it is enough to know only 
the function P on the arc BCD. But, if necessary, it 
may be derived for all the points in the crystal region. 

It should be mentioned that the solution is not ana- 
lytical for the whole crystal region. For example 329/~y 2 
and other higher derivatives have infinite values on 
AP. Also, 32~ll/10X 2 is infinite on BQ, etc. Moreover, 
some discontinuities in the incident beam may lead to 
discontinuities even in the first-order derivatives of ~u 
and 9. A more detailed discussion may be found in 
Morse & Feshbach (1953). 

3. Application of the mixed problem 

Fig. 5 represents one example of the mixed problem 
for the reflexion of a fi-function beam on a plane par- 
allel crystal plate. In regions I, III, V, etc., the mixed 
problem for g/exists whilst in regions II, IV, etc., the 
mixed problem for ~ is applicable. Let p and q be the 
depths in the plate along the incident and reflected 
beams respectively. The initial conditions for the first 
region are given by: 

g(y)=~u(fly, y)=~(y); f(x)=9(x,O)=~(O). (34) 

By applying formulae (42) from Appendix I: 

oo ~ y 2 .  cr 2" (35) 
" 

This result coincides with that of Werner (1965). 
Further, by using (43) the function ~u on BC may be 
expressed: 

gt(p, r/) = ~(r/) + 0(I/) (p-flri)a z 
oo p, - 1/ , in - 1 

a z", (36) +(p-P,1) .=27-' (n- 1)!,! 
where: 

1 for r />0  
0(1/)= 0 for r / = 0 .  (37) 

For the second region, the initial conditions are: 

g(x)=9[x,~z(x-p)]=O; f(y)=~u(p,y).  (38) 

By using (45) the function 7 t on BD becomes: 
= + 

+ ~, Z aI")P"-~/3zrl "+z-1 ~rz" (39) 
n = 2  1 = 0  
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where the coefficients a~ ") are given in Appendix II. 
This process may be continued for subsequent regions. 

This work was partly performed during my stay at 
the Brazilian Centre for Physical Research, Rio de 
Janeiro. I would like to express my sincere gratitude to 
Professor Alfredo Marques de Oliveira for the support 
he gave to this work. I am also indebted to my col- 
leagues from Bucharest, Mr A. Stoica for helpful dis- 
cussion and Mrs M. Popescu for her kind interest and 
encouragement. 

APPENDIX I 
Solution of the mixed problem 

The solution of the mixed problem for ~ will be 
derived. Taking account Fig. 2 and the formulae 
(26, 29a, 30), (27a) becomes: 

~,(¢,,~) =g(,~) +,,  ¢(x)A[2~l/(~ - x )  (y-,~)l 
#(n) 

i 
a(O 

-o" g(y)V[~-fl(y)]/(y-tl) 

x j~ {2aV[~-fl(y)](y-rl)}. (40) 
Let R be a point on a characteristic y =Yo (point R'). 

Therefore, in equation (40), r/=y0. Further by differ- 
entiating with respect to ~ and by using (24a) and (29b): 

¢(~) = f ( ~  + a I ~ ~(x)l/[~(x)- Yo]/(~- x) 
¢#(Y0) 

x jt {2al/(~-x)[o~(x)-yo]}dx 

+a ~,o g(y)Yo{ZaY[¢-fl(y)](y-yo)}dy. (41) 

This is a Voltera integral equation for the function ~. 
Given that: 

oo (_  1)~ t 2k+n, 
L(2t) = a=0 ~ k!(k + n)------~. 

and by consideration of the expansion (31), the equa- 
tion (41) becomes: 

I 
"(O 

~.(~)=f.(O + g,,(y)dy (for n=0,1);  
~Y0 

¢.(0=A(0 
I ' (° t~]  ( -  1) k , ,  

-F ~ gn-2k I,y) [~--fl(y)]k(y-- yo)kdy 
~vy 0 k=O • 

I~ q~)n--2--2k (X) (~--X) k 
[(n-2)121 (- 1) ~ 

+ ~: k! (k+l ) !  #(Yo) k = o 

× [~(x) --yo] ~ + ~dx (for n > 2), (42) 

where [n/2] represents the integer part of n/2. 
Further, from (40) is obtained: 

gt.(Gr/)=g.(r/) (for n=0,1);  

~'.(~,~) =g.(~) 
f~('D C(n--2)12] (__  1)k 

- ,~. k~=o kI(k + 1)! g"-z-2k (y) 

x [~_fl(y)]k + X(y_ tl)kdy 

i 
~ c( .- .m ( _ l y  

+ ~ ~ . -2-2~(x)  ( ~ - x )  ~ 
~c.) k=0 (k!)' 

x[e(x)--r/]kdx (for n>_2). (43) 

I 
~(,D 

~p.(~,r/)=~.(0- g,,(y)dy (for n=0,1);  

~.(~,~)= ~ . (0  

f 
.(o t.m (_  1y 

-- .,, ~,~o--~y-__.. g.-2k(Y) [¢--fl(Y)lk(y--rl)kdY 

i ~ [ ( . - .m (_  1), 
5 ¢.-2-2k(x) (~-x) * 

~(,) k=o kI(k+l)! 
× [a(x)-  r/] k + Mx (for n > 2). (44) 

The solution for the mixed problem for ~0 is obtained 
in the same manner. Only the results will be written: 

7t.(r/)=f.(r/) (for n=0, 1); 

V'.(0 =f.(q) 
la(,o [(.-~)/2] (_  1)k 

xo k = 0  ( k ! )  2 gn-z-2k(X) (X--Xo) k 

x [r/- a(x)]kdx 

I 
t/ [ (n--2)/2]  ( _  1)+ 

+ ~: kI(k + 11' 7t"-2-2k(Y) 
a(x 0) k = 0  

X[fl(y)--Xo]k+'(ri--y)kdy (for n>__2). (45) 

~o,,(~, r/) = g,,(r/) + ~,,(y)dy 

~0.(~, ~) =g.(~) 

(for n=0,  1); 

~,.(~.~)= 

I B(,,) u,,-,-)n] ( -  l)" 
Y g,,-2-2k(x) (x 

.,,, ,-'o ( k+  1)!k! 

x [r/- ~(x)] k + ldx 

" t " ' ]  ( -  ly' 
+ I~(o k~o-(~-.)~ T'n-2~,(Y)[fl(Y)--Qk(rl--Y)kdY 

(for n > 2 ) .  (46) 

¢.(~,r/)=Yt,(r/) (for n=0,1);  

v ' . (0 

(.(,,) [(,,-~m ( _  1)" 
- ~ Y. g.-2-2k(x) ( x - O  k ,~ k=o (k!) 2 

x [r/-- ~(x)]kdx 

i . [(,,-~m (_  1y 
~,,-2-2,,(Y) ,,(x) k=0 kI(k+ 1)! 

X[fl(y)--Qk+l(ri-y)kdy (for n > 2 ) .  (47) 
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For a convex crystal region formulae (45,46,47) are 
simplified since g(x) = O. 

APPENDIX II 

The coefficients a[ ") from (39) are" 

a (2 )_1  a(l 2 ) = 0  a(2 2) --:-} 0 - - ~  = • 

For n > 3 

1 n - 2  
aC0.) - a(x.) - n! (n-  1)! n ! (n -  1)! ' 

1 z 
a~") = ( n + l -  1)! ~= ( -  1)~-1 (n+l-k-k!  1)! 

a ( n )  _ 

n - - I  

a(n-  k) 
I - k  

(for 2 < l < n - 2 ) ;  

(2n-2)t 
n--2 ( 2 n - 2 - k ) !  (._~) ] 

X (- -  1) n-2"q- ~ ( - -  1) k-1 • 
k=l k! - . - k - l j  , 

1 
a(n n) -- _ _  

(2n-- 1)! 

,,-2 ( 2 n - k -  1)!/7(n--k)] 
x n ( -1 )" -x+  Z ( -1 )  k-1 

k=a k! "n-k j .  
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A simple numerical method of determining the absorption correction factors for spherical and cylind- 
rical specimens is described. The construction of line profiles of the diffraction peaks for both types of 
specimen illustrates the origin of errors inherent in all numerical methods of this kind. The difference 
in line profiles, particularly the line shift, for spherical and cylindrical specimens could influence the 
choice of specimen geometry for accurate lattice parameter determinations• 

1. Introduction 

Recent numerical methods of calculating absorption 
correction factors for spheres and cylinders (Weber, 
1967, 1969; Dwiggins, 1974, 1.975) have revealed sub- 
stantial discrepancies with International Tables for X-ray 
Crystallography (1959) of up to 2.5%. The largest 
errors are associated with low Bragg angles and large 
values of the product of the linear absorption coeffi- 
cient and the radius of the specimen, /zR, when the 
diffracted beam emerges from the 'skin' of the specimen 
only. It appears that these errors are due to inaccurate 
numerical integration in this region of the specimen. 
This paper describes the contribution of different 
regions of spherical and cylindrical specimens to the 
resultant line profile of the diffraction peaks in an 
attempt to establish the origin of these errors. 

Several analytical and numerical methods (Claasen, 

1930; Evans & Ekstein, 1952; Weber 1969; Dwiggins, 
1970, whilst yielding the absorption factor do not 
afford a simple determination of the line profile. 
Taylor & Sinclair (1945) introduced a strip method 
for deriving the absorption factor for a cylinder in 
which the specimen was divided into strips parallel 
to the direction of the diffracted X-ray beam. From 
this construction line profiles for cylindrical specimens 
were determined. In this paper the strip method of 
Taylor & Sinclair is applied to both spherical and 
cylindrical specimens and automatic computing meth- 
ods are used to eliminate time-consuming graphical 
integration. 

2. Calculation of the absorption correction factor 

For a non-absorbing medium the intensity of a 
diffracted X-ray beam is directly proportional to the 
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